Приходит студент на экзамен по асимптотическим методам в прикладной математике. Тянет билет. Профессор спрашивает:
- Признавайтесь - на какую оценку рассчитываете?
- На «отлично», - отчеканил студент.
- С чего бы это? - оживился профессор, предвкушая розыск и конфискацию хитроумно запрятанных шпаргалок.
- Я, видите ли, все знаю...
- Да что вы говорите?
- Ну а чего не знаю - выведу.
- Ах, так! Тогда выведете формулу... э-э... бороды.
- Асимптоматика здесь довольна проста, - с ходу приступил к объяснению студент. - Представим бороду в виде предела суммы непрерывных функций роста волос. Можно априори утверждать, исходя из чисто физических соображений, что функция бороды будет непрерывна и ограничена, хотя, впрочем, нетрудно провести и подробный анализ её свойств.
Следовательно, позволительно выделить две подпоследователь-ности функций роста волос и представить исследуемую функцию в виде суммы их пределов. Получаем:
борода = бор + ода.
Рассмотрим первую составляющую. Нильс Бор (не в честь ли его она названа?) показал, что в принципе эта функция во всех точках совпадает с функцией леса. Что же касается второй - оды, то её можно представить в виде обобщенной функции стиха:
борода = бор + ода = лес + стих.
В свою очередь, сумма последних двух функций, по сути, описывает физическую модель безветрия, разложение для которой имеется в приложении 2 к учебнику по функциональному анализу Колмогорова. Применяя, простейшие алгебраические преобразования и помня о физическом смысле аргументов нашей исходной функции, окончательно получаем:
борода = лес + стих = безветрие =
= безве + 3е = -ве + 3е =
= 3е - ве = е*(3-в),
где е - основание натурального логарифма, в - коэффициент волосатости...
Нравится
0 comments:
Отправить комментарий